Line data Source code
1 : // Deque implementation -*- C++ -*-
2 :
3 : // Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 : // Free Software Foundation, Inc.
5 : //
6 : // This file is part of the GNU ISO C++ Library. This library is free
7 : // software; you can redistribute it and/or modify it under the
8 : // terms of the GNU General Public License as published by the
9 : // Free Software Foundation; either version 3, or (at your option)
10 : // any later version.
11 :
12 : // This library is distributed in the hope that it will be useful,
13 : // but WITHOUT ANY WARRANTY; without even the implied warranty of
14 : // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 : // GNU General Public License for more details.
16 :
17 : // Under Section 7 of GPL version 3, you are granted additional
18 : // permissions described in the GCC Runtime Library Exception, version
19 : // 3.1, as published by the Free Software Foundation.
20 :
21 : // You should have received a copy of the GNU General Public License and
22 : // a copy of the GCC Runtime Library Exception along with this program;
23 : // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
24 : // <http://www.gnu.org/licenses/>.
25 :
26 : /*
27 : *
28 : * Copyright (c) 1994
29 : * Hewlett-Packard Company
30 : *
31 : * Permission to use, copy, modify, distribute and sell this software
32 : * and its documentation for any purpose is hereby granted without fee,
33 : * provided that the above copyright notice appear in all copies and
34 : * that both that copyright notice and this permission notice appear
35 : * in supporting documentation. Hewlett-Packard Company makes no
36 : * representations about the suitability of this software for any
37 : * purpose. It is provided "as is" without express or implied warranty.
38 : *
39 : *
40 : * Copyright (c) 1997
41 : * Silicon Graphics Computer Systems, Inc.
42 : *
43 : * Permission to use, copy, modify, distribute and sell this software
44 : * and its documentation for any purpose is hereby granted without fee,
45 : * provided that the above copyright notice appear in all copies and
46 : * that both that copyright notice and this permission notice appear
47 : * in supporting documentation. Silicon Graphics makes no
48 : * representations about the suitability of this software for any
49 : * purpose. It is provided "as is" without express or implied warranty.
50 : */
51 :
52 : /** @file stl_deque.h
53 : * This is an internal header file, included by other library headers.
54 : * You should not attempt to use it directly.
55 : */
56 :
57 : #ifndef _STL_DEQUE_H
58 : #define _STL_DEQUE_H 1
59 :
60 : #include <bits/concept_check.h>
61 : #include <bits/stl_iterator_base_types.h>
62 : #include <bits/stl_iterator_base_funcs.h>
63 : #include <initializer_list>
64 :
65 : _GLIBCXX_BEGIN_NESTED_NAMESPACE(std, _GLIBCXX_STD_D)
66 :
67 : /**
68 : * @brief This function controls the size of memory nodes.
69 : * @param size The size of an element.
70 : * @return The number (not byte size) of elements per node.
71 : *
72 : * This function started off as a compiler kludge from SGI, but seems to
73 : * be a useful wrapper around a repeated constant expression. The '512' is
74 : * tunable (and no other code needs to change), but no investigation has
75 : * been done since inheriting the SGI code.
76 : */
77 : inline size_t
78 2145 : __deque_buf_size(size_t __size)
79 2145 : { return __size < 512 ? size_t(512 / __size) : size_t(1); }
80 :
81 :
82 : /**
83 : * @brief A deque::iterator.
84 : *
85 : * Quite a bit of intelligence here. Much of the functionality of
86 : * deque is actually passed off to this class. A deque holds two
87 : * of these internally, marking its valid range. Access to
88 : * elements is done as offsets of either of those two, relying on
89 : * operator overloading in this class.
90 : *
91 : * All the functions are op overloads except for _M_set_node.
92 : */
93 : template<typename _Tp, typename _Ref, typename _Ptr>
94 : struct _Deque_iterator
95 : {
96 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
97 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
98 :
99 990 : static size_t _S_buffer_size()
100 990 : { return __deque_buf_size(sizeof(_Tp)); }
101 :
102 : typedef std::random_access_iterator_tag iterator_category;
103 : typedef _Tp value_type;
104 : typedef _Ptr pointer;
105 : typedef _Ref reference;
106 : typedef size_t size_type;
107 : typedef ptrdiff_t difference_type;
108 : typedef _Tp** _Map_pointer;
109 : typedef _Deque_iterator _Self;
110 :
111 : _Tp* _M_cur;
112 : _Tp* _M_first;
113 : _Tp* _M_last;
114 : _Map_pointer _M_node;
115 :
116 : _Deque_iterator(_Tp* __x, _Map_pointer __y)
117 : : _M_cur(__x), _M_first(*__y),
118 : _M_last(*__y + _S_buffer_size()), _M_node(__y) { }
119 :
120 660 : _Deque_iterator()
121 660 : : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) { }
122 :
123 2145 : _Deque_iterator(const iterator& __x)
124 : : _M_cur(__x._M_cur), _M_first(__x._M_first),
125 2145 : _M_last(__x._M_last), _M_node(__x._M_node) { }
126 :
127 : reference
128 0 : operator*() const
129 0 : { return *_M_cur; }
130 :
131 : pointer
132 : operator->() const
133 : { return _M_cur; }
134 :
135 : _Self&
136 0 : operator++()
137 : {
138 0 : ++_M_cur;
139 0 : if (_M_cur == _M_last)
140 : {
141 0 : _M_set_node(_M_node + 1);
142 0 : _M_cur = _M_first;
143 : }
144 0 : return *this;
145 : }
146 :
147 : _Self
148 : operator++(int)
149 : {
150 : _Self __tmp = *this;
151 : ++*this;
152 : return __tmp;
153 : }
154 :
155 : _Self&
156 0 : operator--()
157 : {
158 0 : if (_M_cur == _M_first)
159 : {
160 0 : _M_set_node(_M_node - 1);
161 0 : _M_cur = _M_last;
162 : }
163 0 : --_M_cur;
164 0 : return *this;
165 : }
166 :
167 : _Self
168 : operator--(int)
169 : {
170 : _Self __tmp = *this;
171 : --*this;
172 : return __tmp;
173 : }
174 :
175 : _Self&
176 0 : operator+=(difference_type __n)
177 : {
178 0 : const difference_type __offset = __n + (_M_cur - _M_first);
179 0 : if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
180 0 : _M_cur += __n;
181 : else
182 : {
183 : const difference_type __node_offset =
184 : __offset > 0 ? __offset / difference_type(_S_buffer_size())
185 : : -difference_type((-__offset - 1)
186 0 : / _S_buffer_size()) - 1;
187 0 : _M_set_node(_M_node + __node_offset);
188 0 : _M_cur = _M_first + (__offset - __node_offset
189 : * difference_type(_S_buffer_size()));
190 : }
191 0 : return *this;
192 : }
193 :
194 : _Self
195 0 : operator+(difference_type __n) const
196 : {
197 0 : _Self __tmp = *this;
198 0 : return __tmp += __n;
199 : }
200 :
201 : _Self&
202 0 : operator-=(difference_type __n)
203 0 : { return *this += -__n; }
204 :
205 : _Self
206 0 : operator-(difference_type __n) const
207 : {
208 0 : _Self __tmp = *this;
209 0 : return __tmp -= __n;
210 : }
211 :
212 : reference
213 0 : operator[](difference_type __n) const
214 0 : { return *(*this + __n); }
215 :
216 : /**
217 : * Prepares to traverse new_node. Sets everything except
218 : * _M_cur, which should therefore be set by the caller
219 : * immediately afterwards, based on _M_first and _M_last.
220 : */
221 : void
222 660 : _M_set_node(_Map_pointer __new_node)
223 : {
224 660 : _M_node = __new_node;
225 660 : _M_first = *__new_node;
226 660 : _M_last = _M_first + difference_type(_S_buffer_size());
227 660 : }
228 : };
229 :
230 : // Note: we also provide overloads whose operands are of the same type in
231 : // order to avoid ambiguous overload resolution when std::rel_ops operators
232 : // are in scope (for additional details, see libstdc++/3628)
233 : template<typename _Tp, typename _Ref, typename _Ptr>
234 : inline bool
235 0 : operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
236 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
237 0 : { return __x._M_cur == __y._M_cur; }
238 :
239 : template<typename _Tp, typename _RefL, typename _PtrL,
240 : typename _RefR, typename _PtrR>
241 : inline bool
242 : operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
243 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
244 : { return __x._M_cur == __y._M_cur; }
245 :
246 : template<typename _Tp, typename _Ref, typename _Ptr>
247 : inline bool
248 0 : operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
249 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
250 0 : { return !(__x == __y); }
251 :
252 : template<typename _Tp, typename _RefL, typename _PtrL,
253 : typename _RefR, typename _PtrR>
254 : inline bool
255 : operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
256 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
257 : { return !(__x == __y); }
258 :
259 : template<typename _Tp, typename _Ref, typename _Ptr>
260 : inline bool
261 : operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
262 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
263 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
264 : : (__x._M_node < __y._M_node); }
265 :
266 : template<typename _Tp, typename _RefL, typename _PtrL,
267 : typename _RefR, typename _PtrR>
268 : inline bool
269 : operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
270 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
271 : { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
272 : : (__x._M_node < __y._M_node); }
273 :
274 : template<typename _Tp, typename _Ref, typename _Ptr>
275 : inline bool
276 : operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
277 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
278 : { return __y < __x; }
279 :
280 : template<typename _Tp, typename _RefL, typename _PtrL,
281 : typename _RefR, typename _PtrR>
282 : inline bool
283 : operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
284 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
285 : { return __y < __x; }
286 :
287 : template<typename _Tp, typename _Ref, typename _Ptr>
288 : inline bool
289 : operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
290 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
291 : { return !(__y < __x); }
292 :
293 : template<typename _Tp, typename _RefL, typename _PtrL,
294 : typename _RefR, typename _PtrR>
295 : inline bool
296 : operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
297 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
298 : { return !(__y < __x); }
299 :
300 : template<typename _Tp, typename _Ref, typename _Ptr>
301 : inline bool
302 : operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
303 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
304 : { return !(__x < __y); }
305 :
306 : template<typename _Tp, typename _RefL, typename _PtrL,
307 : typename _RefR, typename _PtrR>
308 : inline bool
309 : operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
310 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
311 : { return !(__x < __y); }
312 :
313 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
314 : // According to the resolution of DR179 not only the various comparison
315 : // operators but also operator- must accept mixed iterator/const_iterator
316 : // parameters.
317 : template<typename _Tp, typename _Ref, typename _Ptr>
318 : inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
319 330 : operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
320 : const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
321 : {
322 : return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
323 : (_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
324 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
325 330 : + (__y._M_last - __y._M_cur);
326 : }
327 :
328 : template<typename _Tp, typename _RefL, typename _PtrL,
329 : typename _RefR, typename _PtrR>
330 : inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
331 : operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
332 : const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
333 : {
334 : return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
335 : (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
336 : * (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
337 : + (__y._M_last - __y._M_cur);
338 : }
339 :
340 : template<typename _Tp, typename _Ref, typename _Ptr>
341 : inline _Deque_iterator<_Tp, _Ref, _Ptr>
342 : operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
343 : { return __x + __n; }
344 :
345 : template<typename _Tp>
346 : void
347 : fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>& __first,
348 : const _Deque_iterator<_Tp, _Tp&, _Tp*>& __last, const _Tp& __value);
349 :
350 : /**
351 : * Deque base class. This class provides the unified face for %deque's
352 : * allocation. This class's constructor and destructor allocate and
353 : * deallocate (but do not initialize) storage. This makes %exception
354 : * safety easier.
355 : *
356 : * Nothing in this class ever constructs or destroys an actual Tp element.
357 : * (Deque handles that itself.) Only/All memory management is performed
358 : * here.
359 : */
360 : template<typename _Tp, typename _Alloc>
361 : class _Deque_base
362 : {
363 : public:
364 : typedef _Alloc allocator_type;
365 :
366 : allocator_type
367 : get_allocator() const
368 : { return allocator_type(_M_get_Tp_allocator()); }
369 :
370 : typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
371 : typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
372 :
373 165 : _Deque_base()
374 165 : : _M_impl()
375 165 : { _M_initialize_map(0); }
376 :
377 165 : _Deque_base(const allocator_type& __a, size_t __num_elements)
378 165 : : _M_impl(__a)
379 165 : { _M_initialize_map(__num_elements); }
380 :
381 : _Deque_base(const allocator_type& __a)
382 : : _M_impl(__a)
383 : { }
384 :
385 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
386 : _Deque_base(_Deque_base&& __x)
387 : : _M_impl(__x._M_get_Tp_allocator())
388 : {
389 : _M_initialize_map(0);
390 : if (__x._M_impl._M_map)
391 : {
392 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
393 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
394 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
395 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
396 : }
397 : }
398 : #endif
399 :
400 : ~_Deque_base();
401 :
402 : protected:
403 : //This struct encapsulates the implementation of the std::deque
404 : //standard container and at the same time makes use of the EBO
405 : //for empty allocators.
406 : typedef typename _Alloc::template rebind<_Tp*>::other _Map_alloc_type;
407 :
408 : typedef typename _Alloc::template rebind<_Tp>::other _Tp_alloc_type;
409 :
410 : struct _Deque_impl
411 : : public _Tp_alloc_type
412 165 : {
413 : _Tp** _M_map;
414 : size_t _M_map_size;
415 : iterator _M_start;
416 : iterator _M_finish;
417 :
418 165 : _Deque_impl()
419 : : _Tp_alloc_type(), _M_map(0), _M_map_size(0),
420 165 : _M_start(), _M_finish()
421 0 : { }
422 :
423 165 : _Deque_impl(const _Tp_alloc_type& __a)
424 : : _Tp_alloc_type(__a), _M_map(0), _M_map_size(0),
425 165 : _M_start(), _M_finish()
426 0 : { }
427 : };
428 :
429 : _Tp_alloc_type&
430 330 : _M_get_Tp_allocator()
431 330 : { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }
432 :
433 : const _Tp_alloc_type&
434 660 : _M_get_Tp_allocator() const
435 660 : { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }
436 :
437 : _Map_alloc_type
438 495 : _M_get_map_allocator() const
439 495 : { return _Map_alloc_type(_M_get_Tp_allocator()); }
440 :
441 : _Tp*
442 330 : _M_allocate_node()
443 : {
444 330 : return _M_impl._Tp_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
445 : }
446 :
447 : void
448 165 : _M_deallocate_node(_Tp* __p)
449 : {
450 165 : _M_impl._Tp_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
451 165 : }
452 :
453 : _Tp**
454 330 : _M_allocate_map(size_t __n)
455 330 : { return _M_get_map_allocator().allocate(__n); }
456 :
457 : void
458 165 : _M_deallocate_map(_Tp** __p, size_t __n)
459 165 : { _M_get_map_allocator().deallocate(__p, __n); }
460 :
461 : protected:
462 : void _M_initialize_map(size_t);
463 : void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
464 : void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
465 : enum { _S_initial_map_size = 8 };
466 :
467 : _Deque_impl _M_impl;
468 : };
469 :
470 : template<typename _Tp, typename _Alloc>
471 165 : _Deque_base<_Tp, _Alloc>::
472 : ~_Deque_base()
473 : {
474 165 : if (this->_M_impl._M_map)
475 : {
476 165 : _M_destroy_nodes(this->_M_impl._M_start._M_node,
477 : this->_M_impl._M_finish._M_node + 1);
478 165 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
479 : }
480 165 : }
481 :
482 : /**
483 : * @brief Layout storage.
484 : * @param num_elements The count of T's for which to allocate space
485 : * at first.
486 : * @return Nothing.
487 : *
488 : * The initial underlying memory layout is a bit complicated...
489 : */
490 : template<typename _Tp, typename _Alloc>
491 : void
492 330 : _Deque_base<_Tp, _Alloc>::
493 : _M_initialize_map(size_t __num_elements)
494 : {
495 : const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
496 330 : + 1);
497 :
498 330 : this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
499 : size_t(__num_nodes + 2));
500 330 : this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);
501 :
502 : // For "small" maps (needing less than _M_map_size nodes), allocation
503 : // starts in the middle elements and grows outwards. So nstart may be
504 : // the beginning of _M_map, but for small maps it may be as far in as
505 : // _M_map+3.
506 :
507 : _Tp** __nstart = (this->_M_impl._M_map
508 330 : + (this->_M_impl._M_map_size - __num_nodes) / 2);
509 330 : _Tp** __nfinish = __nstart + __num_nodes;
510 :
511 : __try
512 330 : { _M_create_nodes(__nstart, __nfinish); }
513 0 : __catch(...)
514 : {
515 0 : _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
516 0 : this->_M_impl._M_map = 0;
517 0 : this->_M_impl._M_map_size = 0;
518 0 : __throw_exception_again;
519 : }
520 :
521 330 : this->_M_impl._M_start._M_set_node(__nstart);
522 330 : this->_M_impl._M_finish._M_set_node(__nfinish - 1);
523 330 : this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
524 330 : this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
525 : + __num_elements
526 : % __deque_buf_size(sizeof(_Tp)));
527 330 : }
528 :
529 : template<typename _Tp, typename _Alloc>
530 : void
531 330 : _Deque_base<_Tp, _Alloc>::
532 : _M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
533 : {
534 : _Tp** __cur;
535 : __try
536 : {
537 660 : for (__cur = __nstart; __cur < __nfinish; ++__cur)
538 330 : *__cur = this->_M_allocate_node();
539 : }
540 0 : __catch(...)
541 : {
542 0 : _M_destroy_nodes(__nstart, __cur);
543 0 : __throw_exception_again;
544 : }
545 330 : }
546 :
547 : template<typename _Tp, typename _Alloc>
548 : void
549 165 : _Deque_base<_Tp, _Alloc>::
550 : _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
551 : {
552 330 : for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
553 165 : _M_deallocate_node(*__n);
554 165 : }
555 :
556 : /**
557 : * @brief A standard container using fixed-size memory allocation and
558 : * constant-time manipulation of elements at either end.
559 : *
560 : * @ingroup sequences
561 : *
562 : * Meets the requirements of a <a href="tables.html#65">container</a>, a
563 : * <a href="tables.html#66">reversible container</a>, and a
564 : * <a href="tables.html#67">sequence</a>, including the
565 : * <a href="tables.html#68">optional sequence requirements</a>.
566 : *
567 : * In previous HP/SGI versions of deque, there was an extra template
568 : * parameter so users could control the node size. This extension turned
569 : * out to violate the C++ standard (it can be detected using template
570 : * template parameters), and it was removed.
571 : *
572 : * Here's how a deque<Tp> manages memory. Each deque has 4 members:
573 : *
574 : * - Tp** _M_map
575 : * - size_t _M_map_size
576 : * - iterator _M_start, _M_finish
577 : *
578 : * map_size is at least 8. %map is an array of map_size
579 : * pointers-to-"nodes". (The name %map has nothing to do with the
580 : * std::map class, and "nodes" should not be confused with
581 : * std::list's usage of "node".)
582 : *
583 : * A "node" has no specific type name as such, but it is referred
584 : * to as "node" in this file. It is a simple array-of-Tp. If Tp
585 : * is very large, there will be one Tp element per node (i.e., an
586 : * "array" of one). For non-huge Tp's, node size is inversely
587 : * related to Tp size: the larger the Tp, the fewer Tp's will fit
588 : * in a node. The goal here is to keep the total size of a node
589 : * relatively small and constant over different Tp's, to improve
590 : * allocator efficiency.
591 : *
592 : * Not every pointer in the %map array will point to a node. If
593 : * the initial number of elements in the deque is small, the
594 : * /middle/ %map pointers will be valid, and the ones at the edges
595 : * will be unused. This same situation will arise as the %map
596 : * grows: available %map pointers, if any, will be on the ends. As
597 : * new nodes are created, only a subset of the %map's pointers need
598 : * to be copied "outward".
599 : *
600 : * Class invariants:
601 : * - For any nonsingular iterator i:
602 : * - i.node points to a member of the %map array. (Yes, you read that
603 : * correctly: i.node does not actually point to a node.) The member of
604 : * the %map array is what actually points to the node.
605 : * - i.first == *(i.node) (This points to the node (first Tp element).)
606 : * - i.last == i.first + node_size
607 : * - i.cur is a pointer in the range [i.first, i.last). NOTE:
608 : * the implication of this is that i.cur is always a dereferenceable
609 : * pointer, even if i is a past-the-end iterator.
610 : * - Start and Finish are always nonsingular iterators. NOTE: this
611 : * means that an empty deque must have one node, a deque with <N
612 : * elements (where N is the node buffer size) must have one node, a
613 : * deque with N through (2N-1) elements must have two nodes, etc.
614 : * - For every node other than start.node and finish.node, every
615 : * element in the node is an initialized object. If start.node ==
616 : * finish.node, then [start.cur, finish.cur) are initialized
617 : * objects, and the elements outside that range are uninitialized
618 : * storage. Otherwise, [start.cur, start.last) and [finish.first,
619 : * finish.cur) are initialized objects, and [start.first, start.cur)
620 : * and [finish.cur, finish.last) are uninitialized storage.
621 : * - [%map, %map + map_size) is a valid, non-empty range.
622 : * - [start.node, finish.node] is a valid range contained within
623 : * [%map, %map + map_size).
624 : * - A pointer in the range [%map, %map + map_size) points to an allocated
625 : * node if and only if the pointer is in the range
626 : * [start.node, finish.node].
627 : *
628 : * Here's the magic: nothing in deque is "aware" of the discontiguous
629 : * storage!
630 : *
631 : * The memory setup and layout occurs in the parent, _Base, and the iterator
632 : * class is entirely responsible for "leaping" from one node to the next.
633 : * All the implementation routines for deque itself work only through the
634 : * start and finish iterators. This keeps the routines simple and sane,
635 : * and we can use other standard algorithms as well.
636 : */
637 : template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
638 : class deque : protected _Deque_base<_Tp, _Alloc>
639 : {
640 : // concept requirements
641 : typedef typename _Alloc::value_type _Alloc_value_type;
642 : __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
643 : __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
644 :
645 : typedef _Deque_base<_Tp, _Alloc> _Base;
646 : typedef typename _Base::_Tp_alloc_type _Tp_alloc_type;
647 :
648 : public:
649 : typedef _Tp value_type;
650 : typedef typename _Tp_alloc_type::pointer pointer;
651 : typedef typename _Tp_alloc_type::const_pointer const_pointer;
652 : typedef typename _Tp_alloc_type::reference reference;
653 : typedef typename _Tp_alloc_type::const_reference const_reference;
654 : typedef typename _Base::iterator iterator;
655 : typedef typename _Base::const_iterator const_iterator;
656 : typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
657 : typedef std::reverse_iterator<iterator> reverse_iterator;
658 : typedef size_t size_type;
659 : typedef ptrdiff_t difference_type;
660 : typedef _Alloc allocator_type;
661 :
662 : protected:
663 : typedef pointer* _Map_pointer;
664 :
665 0 : static size_t _S_buffer_size()
666 0 : { return __deque_buf_size(sizeof(_Tp)); }
667 :
668 : // Functions controlling memory layout, and nothing else.
669 : using _Base::_M_initialize_map;
670 : using _Base::_M_create_nodes;
671 : using _Base::_M_destroy_nodes;
672 : using _Base::_M_allocate_node;
673 : using _Base::_M_deallocate_node;
674 : using _Base::_M_allocate_map;
675 : using _Base::_M_deallocate_map;
676 : using _Base::_M_get_Tp_allocator;
677 :
678 : /**
679 : * A total of four data members accumulated down the hierarchy.
680 : * May be accessed via _M_impl.*
681 : */
682 : using _Base::_M_impl;
683 :
684 : public:
685 : // [23.2.1.1] construct/copy/destroy
686 : // (assign() and get_allocator() are also listed in this section)
687 : /**
688 : * @brief Default constructor creates no elements.
689 : */
690 165 : deque()
691 165 : : _Base() { }
692 :
693 : /**
694 : * @brief Creates a %deque with no elements.
695 : * @param a An allocator object.
696 : */
697 : explicit
698 : deque(const allocator_type& __a)
699 : : _Base(__a, 0) { }
700 :
701 : /**
702 : * @brief Creates a %deque with copies of an exemplar element.
703 : * @param n The number of elements to initially create.
704 : * @param value An element to copy.
705 : * @param a An allocator.
706 : *
707 : * This constructor fills the %deque with @a n copies of @a value.
708 : */
709 : explicit
710 : deque(size_type __n, const value_type& __value = value_type(),
711 : const allocator_type& __a = allocator_type())
712 : : _Base(__a, __n)
713 : { _M_fill_initialize(__value); }
714 :
715 : /**
716 : * @brief %Deque copy constructor.
717 : * @param x A %deque of identical element and allocator types.
718 : *
719 : * The newly-created %deque uses a copy of the allocation object used
720 : * by @a x.
721 : */
722 165 : deque(const deque& __x)
723 165 : : _Base(__x._M_get_Tp_allocator(), __x.size())
724 165 : { std::__uninitialized_copy_a(__x.begin(), __x.end(),
725 : this->_M_impl._M_start,
726 165 : _M_get_Tp_allocator()); }
727 :
728 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
729 : /**
730 : * @brief %Deque move constructor.
731 : * @param x A %deque of identical element and allocator types.
732 : *
733 : * The newly-created %deque contains the exact contents of @a x.
734 : * The contents of @a x are a valid, but unspecified %deque.
735 : */
736 : deque(deque&& __x)
737 : : _Base(std::forward<_Base>(__x)) { }
738 :
739 : /**
740 : * @brief Builds a %deque from an initializer list.
741 : * @param l An initializer_list.
742 : * @param a An allocator object.
743 : *
744 : * Create a %deque consisting of copies of the elements in the
745 : * initializer_list @a l.
746 : *
747 : * This will call the element type's copy constructor N times
748 : * (where N is l.size()) and do no memory reallocation.
749 : */
750 : deque(initializer_list<value_type> __l,
751 : const allocator_type& __a = allocator_type())
752 : : _Base(__a)
753 : {
754 : _M_range_initialize(__l.begin(), __l.end(),
755 : random_access_iterator_tag());
756 : }
757 : #endif
758 :
759 : /**
760 : * @brief Builds a %deque from a range.
761 : * @param first An input iterator.
762 : * @param last An input iterator.
763 : * @param a An allocator object.
764 : *
765 : * Create a %deque consisting of copies of the elements from [first,
766 : * last).
767 : *
768 : * If the iterators are forward, bidirectional, or random-access, then
769 : * this will call the elements' copy constructor N times (where N is
770 : * distance(first,last)) and do no memory reallocation. But if only
771 : * input iterators are used, then this will do at most 2N calls to the
772 : * copy constructor, and logN memory reallocations.
773 : */
774 : template<typename _InputIterator>
775 : deque(_InputIterator __first, _InputIterator __last,
776 : const allocator_type& __a = allocator_type())
777 : : _Base(__a)
778 : {
779 : // Check whether it's an integral type. If so, it's not an iterator.
780 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
781 : _M_initialize_dispatch(__first, __last, _Integral());
782 : }
783 :
784 : /**
785 : * The dtor only erases the elements, and note that if the elements
786 : * themselves are pointers, the pointed-to memory is not touched in any
787 : * way. Managing the pointer is the user's responsibility.
788 : */
789 165 : ~deque()
790 165 : { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }
791 :
792 : /**
793 : * @brief %Deque assignment operator.
794 : * @param x A %deque of identical element and allocator types.
795 : *
796 : * All the elements of @a x are copied, but unlike the copy constructor,
797 : * the allocator object is not copied.
798 : */
799 : deque&
800 : operator=(const deque& __x);
801 :
802 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
803 : /**
804 : * @brief %Deque move assignment operator.
805 : * @param x A %deque of identical element and allocator types.
806 : *
807 : * The contents of @a x are moved into this deque (without copying).
808 : * @a x is a valid, but unspecified %deque.
809 : */
810 : deque&
811 : operator=(deque&& __x)
812 : {
813 : // NB: DR 675.
814 : this->clear();
815 : this->swap(__x);
816 : return *this;
817 : }
818 :
819 : /**
820 : * @brief Assigns an initializer list to a %deque.
821 : * @param l An initializer_list.
822 : *
823 : * This function fills a %deque with copies of the elements in the
824 : * initializer_list @a l.
825 : *
826 : * Note that the assignment completely changes the %deque and that the
827 : * resulting %deque's size is the same as the number of elements
828 : * assigned. Old data may be lost.
829 : */
830 : deque&
831 : operator=(initializer_list<value_type> __l)
832 : {
833 : this->assign(__l.begin(), __l.end());
834 : return *this;
835 : }
836 : #endif
837 :
838 : /**
839 : * @brief Assigns a given value to a %deque.
840 : * @param n Number of elements to be assigned.
841 : * @param val Value to be assigned.
842 : *
843 : * This function fills a %deque with @a n copies of the given
844 : * value. Note that the assignment completely changes the
845 : * %deque and that the resulting %deque's size is the same as
846 : * the number of elements assigned. Old data may be lost.
847 : */
848 : void
849 : assign(size_type __n, const value_type& __val)
850 : { _M_fill_assign(__n, __val); }
851 :
852 : /**
853 : * @brief Assigns a range to a %deque.
854 : * @param first An input iterator.
855 : * @param last An input iterator.
856 : *
857 : * This function fills a %deque with copies of the elements in the
858 : * range [first,last).
859 : *
860 : * Note that the assignment completely changes the %deque and that the
861 : * resulting %deque's size is the same as the number of elements
862 : * assigned. Old data may be lost.
863 : */
864 : template<typename _InputIterator>
865 : void
866 : assign(_InputIterator __first, _InputIterator __last)
867 : {
868 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
869 : _M_assign_dispatch(__first, __last, _Integral());
870 : }
871 :
872 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
873 : /**
874 : * @brief Assigns an initializer list to a %deque.
875 : * @param l An initializer_list.
876 : *
877 : * This function fills a %deque with copies of the elements in the
878 : * initializer_list @a l.
879 : *
880 : * Note that the assignment completely changes the %deque and that the
881 : * resulting %deque's size is the same as the number of elements
882 : * assigned. Old data may be lost.
883 : */
884 : void
885 : assign(initializer_list<value_type> __l)
886 : { this->assign(__l.begin(), __l.end()); }
887 : #endif
888 :
889 : /// Get a copy of the memory allocation object.
890 : allocator_type
891 : get_allocator() const
892 : { return _Base::get_allocator(); }
893 :
894 : // iterators
895 : /**
896 : * Returns a read/write iterator that points to the first element in the
897 : * %deque. Iteration is done in ordinary element order.
898 : */
899 : iterator
900 165 : begin()
901 165 : { return this->_M_impl._M_start; }
902 :
903 : /**
904 : * Returns a read-only (constant) iterator that points to the first
905 : * element in the %deque. Iteration is done in ordinary element order.
906 : */
907 : const_iterator
908 165 : begin() const
909 165 : { return this->_M_impl._M_start; }
910 :
911 : /**
912 : * Returns a read/write iterator that points one past the last
913 : * element in the %deque. Iteration is done in ordinary
914 : * element order.
915 : */
916 : iterator
917 165 : end()
918 165 : { return this->_M_impl._M_finish; }
919 :
920 : /**
921 : * Returns a read-only (constant) iterator that points one past
922 : * the last element in the %deque. Iteration is done in
923 : * ordinary element order.
924 : */
925 : const_iterator
926 165 : end() const
927 165 : { return this->_M_impl._M_finish; }
928 :
929 : /**
930 : * Returns a read/write reverse iterator that points to the
931 : * last element in the %deque. Iteration is done in reverse
932 : * element order.
933 : */
934 : reverse_iterator
935 : rbegin()
936 : { return reverse_iterator(this->_M_impl._M_finish); }
937 :
938 : /**
939 : * Returns a read-only (constant) reverse iterator that points
940 : * to the last element in the %deque. Iteration is done in
941 : * reverse element order.
942 : */
943 : const_reverse_iterator
944 : rbegin() const
945 : { return const_reverse_iterator(this->_M_impl._M_finish); }
946 :
947 : /**
948 : * Returns a read/write reverse iterator that points to one
949 : * before the first element in the %deque. Iteration is done
950 : * in reverse element order.
951 : */
952 : reverse_iterator
953 : rend()
954 : { return reverse_iterator(this->_M_impl._M_start); }
955 :
956 : /**
957 : * Returns a read-only (constant) reverse iterator that points
958 : * to one before the first element in the %deque. Iteration is
959 : * done in reverse element order.
960 : */
961 : const_reverse_iterator
962 : rend() const
963 : { return const_reverse_iterator(this->_M_impl._M_start); }
964 :
965 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
966 : /**
967 : * Returns a read-only (constant) iterator that points to the first
968 : * element in the %deque. Iteration is done in ordinary element order.
969 : */
970 : const_iterator
971 : cbegin() const
972 : { return this->_M_impl._M_start; }
973 :
974 : /**
975 : * Returns a read-only (constant) iterator that points one past
976 : * the last element in the %deque. Iteration is done in
977 : * ordinary element order.
978 : */
979 : const_iterator
980 : cend() const
981 : { return this->_M_impl._M_finish; }
982 :
983 : /**
984 : * Returns a read-only (constant) reverse iterator that points
985 : * to the last element in the %deque. Iteration is done in
986 : * reverse element order.
987 : */
988 : const_reverse_iterator
989 : crbegin() const
990 : { return const_reverse_iterator(this->_M_impl._M_finish); }
991 :
992 : /**
993 : * Returns a read-only (constant) reverse iterator that points
994 : * to one before the first element in the %deque. Iteration is
995 : * done in reverse element order.
996 : */
997 : const_reverse_iterator
998 : crend() const
999 : { return const_reverse_iterator(this->_M_impl._M_start); }
1000 : #endif
1001 :
1002 : // [23.2.1.2] capacity
1003 : /** Returns the number of elements in the %deque. */
1004 : size_type
1005 165 : size() const
1006 165 : { return this->_M_impl._M_finish - this->_M_impl._M_start; }
1007 :
1008 : /** Returns the size() of the largest possible %deque. */
1009 : size_type
1010 : max_size() const
1011 : { return _M_get_Tp_allocator().max_size(); }
1012 :
1013 : /**
1014 : * @brief Resizes the %deque to the specified number of elements.
1015 : * @param new_size Number of elements the %deque should contain.
1016 : * @param x Data with which new elements should be populated.
1017 : *
1018 : * This function will %resize the %deque to the specified
1019 : * number of elements. If the number is smaller than the
1020 : * %deque's current size the %deque is truncated, otherwise the
1021 : * %deque is extended and new elements are populated with given
1022 : * data.
1023 : */
1024 : void
1025 : resize(size_type __new_size, value_type __x = value_type())
1026 : {
1027 : const size_type __len = size();
1028 : if (__new_size < __len)
1029 : _M_erase_at_end(this->_M_impl._M_start + difference_type(__new_size));
1030 : else
1031 : insert(this->_M_impl._M_finish, __new_size - __len, __x);
1032 : }
1033 :
1034 : /**
1035 : * Returns true if the %deque is empty. (Thus begin() would
1036 : * equal end().)
1037 : */
1038 : bool
1039 0 : empty() const
1040 0 : { return this->_M_impl._M_finish == this->_M_impl._M_start; }
1041 :
1042 : // element access
1043 : /**
1044 : * @brief Subscript access to the data contained in the %deque.
1045 : * @param n The index of the element for which data should be
1046 : * accessed.
1047 : * @return Read/write reference to data.
1048 : *
1049 : * This operator allows for easy, array-style, data access.
1050 : * Note that data access with this operator is unchecked and
1051 : * out_of_range lookups are not defined. (For checked lookups
1052 : * see at().)
1053 : */
1054 : reference
1055 : operator[](size_type __n)
1056 : { return this->_M_impl._M_start[difference_type(__n)]; }
1057 :
1058 : /**
1059 : * @brief Subscript access to the data contained in the %deque.
1060 : * @param n The index of the element for which data should be
1061 : * accessed.
1062 : * @return Read-only (constant) reference to data.
1063 : *
1064 : * This operator allows for easy, array-style, data access.
1065 : * Note that data access with this operator is unchecked and
1066 : * out_of_range lookups are not defined. (For checked lookups
1067 : * see at().)
1068 : */
1069 : const_reference
1070 0 : operator[](size_type __n) const
1071 0 : { return this->_M_impl._M_start[difference_type(__n)]; }
1072 :
1073 : protected:
1074 : /// Safety check used only from at().
1075 : void
1076 : _M_range_check(size_type __n) const
1077 : {
1078 : if (__n >= this->size())
1079 : __throw_out_of_range(__N("deque::_M_range_check"));
1080 : }
1081 :
1082 : public:
1083 : /**
1084 : * @brief Provides access to the data contained in the %deque.
1085 : * @param n The index of the element for which data should be
1086 : * accessed.
1087 : * @return Read/write reference to data.
1088 : * @throw std::out_of_range If @a n is an invalid index.
1089 : *
1090 : * This function provides for safer data access. The parameter
1091 : * is first checked that it is in the range of the deque. The
1092 : * function throws out_of_range if the check fails.
1093 : */
1094 : reference
1095 : at(size_type __n)
1096 : {
1097 : _M_range_check(__n);
1098 : return (*this)[__n];
1099 : }
1100 :
1101 : /**
1102 : * @brief Provides access to the data contained in the %deque.
1103 : * @param n The index of the element for which data should be
1104 : * accessed.
1105 : * @return Read-only (constant) reference to data.
1106 : * @throw std::out_of_range If @a n is an invalid index.
1107 : *
1108 : * This function provides for safer data access. The parameter is first
1109 : * checked that it is in the range of the deque. The function throws
1110 : * out_of_range if the check fails.
1111 : */
1112 : const_reference
1113 : at(size_type __n) const
1114 : {
1115 : _M_range_check(__n);
1116 : return (*this)[__n];
1117 : }
1118 :
1119 : /**
1120 : * Returns a read/write reference to the data at the first
1121 : * element of the %deque.
1122 : */
1123 : reference
1124 0 : front()
1125 0 : { return *begin(); }
1126 :
1127 : /**
1128 : * Returns a read-only (constant) reference to the data at the first
1129 : * element of the %deque.
1130 : */
1131 : const_reference
1132 0 : front() const
1133 0 : { return *begin(); }
1134 :
1135 : /**
1136 : * Returns a read/write reference to the data at the last element of the
1137 : * %deque.
1138 : */
1139 : reference
1140 : back()
1141 : {
1142 : iterator __tmp = end();
1143 : --__tmp;
1144 : return *__tmp;
1145 : }
1146 :
1147 : /**
1148 : * Returns a read-only (constant) reference to the data at the last
1149 : * element of the %deque.
1150 : */
1151 : const_reference
1152 : back() const
1153 : {
1154 : const_iterator __tmp = end();
1155 : --__tmp;
1156 : return *__tmp;
1157 : }
1158 :
1159 : // [23.2.1.2] modifiers
1160 : /**
1161 : * @brief Add data to the front of the %deque.
1162 : * @param x Data to be added.
1163 : *
1164 : * This is a typical stack operation. The function creates an
1165 : * element at the front of the %deque and assigns the given
1166 : * data to it. Due to the nature of a %deque this operation
1167 : * can be done in constant time.
1168 : */
1169 : void
1170 : push_front(const value_type& __x)
1171 : {
1172 : if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
1173 : {
1174 : this->_M_impl.construct(this->_M_impl._M_start._M_cur - 1, __x);
1175 : --this->_M_impl._M_start._M_cur;
1176 : }
1177 : else
1178 : _M_push_front_aux(__x);
1179 : }
1180 :
1181 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1182 : void
1183 : push_front(value_type&& __x)
1184 : { emplace_front(std::move(__x)); }
1185 :
1186 : template<typename... _Args>
1187 : void
1188 : emplace_front(_Args&&... __args);
1189 : #endif
1190 :
1191 : /**
1192 : * @brief Add data to the end of the %deque.
1193 : * @param x Data to be added.
1194 : *
1195 : * This is a typical stack operation. The function creates an
1196 : * element at the end of the %deque and assigns the given data
1197 : * to it. Due to the nature of a %deque this operation can be
1198 : * done in constant time.
1199 : */
1200 : void
1201 0 : push_back(const value_type& __x)
1202 : {
1203 0 : if (this->_M_impl._M_finish._M_cur
1204 : != this->_M_impl._M_finish._M_last - 1)
1205 : {
1206 0 : this->_M_impl.construct(this->_M_impl._M_finish._M_cur, __x);
1207 0 : ++this->_M_impl._M_finish._M_cur;
1208 : }
1209 : else
1210 0 : _M_push_back_aux(__x);
1211 0 : }
1212 :
1213 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1214 : void
1215 : push_back(value_type&& __x)
1216 : { emplace_back(std::move(__x)); }
1217 :
1218 : template<typename... _Args>
1219 : void
1220 : emplace_back(_Args&&... __args);
1221 : #endif
1222 :
1223 : /**
1224 : * @brief Removes first element.
1225 : *
1226 : * This is a typical stack operation. It shrinks the %deque by one.
1227 : *
1228 : * Note that no data is returned, and if the first element's data is
1229 : * needed, it should be retrieved before pop_front() is called.
1230 : */
1231 : void
1232 0 : pop_front()
1233 : {
1234 0 : if (this->_M_impl._M_start._M_cur
1235 : != this->_M_impl._M_start._M_last - 1)
1236 : {
1237 0 : this->_M_impl.destroy(this->_M_impl._M_start._M_cur);
1238 0 : ++this->_M_impl._M_start._M_cur;
1239 : }
1240 : else
1241 0 : _M_pop_front_aux();
1242 0 : }
1243 :
1244 : /**
1245 : * @brief Removes last element.
1246 : *
1247 : * This is a typical stack operation. It shrinks the %deque by one.
1248 : *
1249 : * Note that no data is returned, and if the last element's data is
1250 : * needed, it should be retrieved before pop_back() is called.
1251 : */
1252 : void
1253 0 : pop_back()
1254 : {
1255 0 : if (this->_M_impl._M_finish._M_cur
1256 : != this->_M_impl._M_finish._M_first)
1257 : {
1258 0 : --this->_M_impl._M_finish._M_cur;
1259 0 : this->_M_impl.destroy(this->_M_impl._M_finish._M_cur);
1260 : }
1261 : else
1262 0 : _M_pop_back_aux();
1263 0 : }
1264 :
1265 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1266 : /**
1267 : * @brief Inserts an object in %deque before specified iterator.
1268 : * @param position An iterator into the %deque.
1269 : * @param args Arguments.
1270 : * @return An iterator that points to the inserted data.
1271 : *
1272 : * This function will insert an object of type T constructed
1273 : * with T(std::forward<Args>(args)...) before the specified location.
1274 : */
1275 : template<typename... _Args>
1276 : iterator
1277 : emplace(iterator __position, _Args&&... __args);
1278 : #endif
1279 :
1280 : /**
1281 : * @brief Inserts given value into %deque before specified iterator.
1282 : * @param position An iterator into the %deque.
1283 : * @param x Data to be inserted.
1284 : * @return An iterator that points to the inserted data.
1285 : *
1286 : * This function will insert a copy of the given value before the
1287 : * specified location.
1288 : */
1289 : iterator
1290 : insert(iterator __position, const value_type& __x);
1291 :
1292 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1293 : /**
1294 : * @brief Inserts given rvalue into %deque before specified iterator.
1295 : * @param position An iterator into the %deque.
1296 : * @param x Data to be inserted.
1297 : * @return An iterator that points to the inserted data.
1298 : *
1299 : * This function will insert a copy of the given rvalue before the
1300 : * specified location.
1301 : */
1302 : iterator
1303 : insert(iterator __position, value_type&& __x)
1304 : { return emplace(__position, std::move(__x)); }
1305 :
1306 : /**
1307 : * @brief Inserts an initializer list into the %deque.
1308 : * @param p An iterator into the %deque.
1309 : * @param l An initializer_list.
1310 : *
1311 : * This function will insert copies of the data in the
1312 : * initializer_list @a l into the %deque before the location
1313 : * specified by @a p. This is known as "list insert."
1314 : */
1315 : void
1316 : insert(iterator __p, initializer_list<value_type> __l)
1317 : { this->insert(__p, __l.begin(), __l.end()); }
1318 : #endif
1319 :
1320 : /**
1321 : * @brief Inserts a number of copies of given data into the %deque.
1322 : * @param position An iterator into the %deque.
1323 : * @param n Number of elements to be inserted.
1324 : * @param x Data to be inserted.
1325 : *
1326 : * This function will insert a specified number of copies of the given
1327 : * data before the location specified by @a position.
1328 : */
1329 : void
1330 : insert(iterator __position, size_type __n, const value_type& __x)
1331 : { _M_fill_insert(__position, __n, __x); }
1332 :
1333 : /**
1334 : * @brief Inserts a range into the %deque.
1335 : * @param position An iterator into the %deque.
1336 : * @param first An input iterator.
1337 : * @param last An input iterator.
1338 : *
1339 : * This function will insert copies of the data in the range
1340 : * [first,last) into the %deque before the location specified
1341 : * by @a pos. This is known as "range insert."
1342 : */
1343 : template<typename _InputIterator>
1344 : void
1345 : insert(iterator __position, _InputIterator __first,
1346 : _InputIterator __last)
1347 : {
1348 : // Check whether it's an integral type. If so, it's not an iterator.
1349 : typedef typename std::__is_integer<_InputIterator>::__type _Integral;
1350 : _M_insert_dispatch(__position, __first, __last, _Integral());
1351 : }
1352 :
1353 : /**
1354 : * @brief Remove element at given position.
1355 : * @param position Iterator pointing to element to be erased.
1356 : * @return An iterator pointing to the next element (or end()).
1357 : *
1358 : * This function will erase the element at the given position and thus
1359 : * shorten the %deque by one.
1360 : *
1361 : * The user is cautioned that
1362 : * this function only erases the element, and that if the element is
1363 : * itself a pointer, the pointed-to memory is not touched in any way.
1364 : * Managing the pointer is the user's responsibility.
1365 : */
1366 : iterator
1367 : erase(iterator __position);
1368 :
1369 : /**
1370 : * @brief Remove a range of elements.
1371 : * @param first Iterator pointing to the first element to be erased.
1372 : * @param last Iterator pointing to one past the last element to be
1373 : * erased.
1374 : * @return An iterator pointing to the element pointed to by @a last
1375 : * prior to erasing (or end()).
1376 : *
1377 : * This function will erase the elements in the range [first,last) and
1378 : * shorten the %deque accordingly.
1379 : *
1380 : * The user is cautioned that
1381 : * this function only erases the elements, and that if the elements
1382 : * themselves are pointers, the pointed-to memory is not touched in any
1383 : * way. Managing the pointer is the user's responsibility.
1384 : */
1385 : iterator
1386 : erase(iterator __first, iterator __last);
1387 :
1388 : /**
1389 : * @brief Swaps data with another %deque.
1390 : * @param x A %deque of the same element and allocator types.
1391 : *
1392 : * This exchanges the elements between two deques in constant time.
1393 : * (Four pointers, so it should be quite fast.)
1394 : * Note that the global std::swap() function is specialized such that
1395 : * std::swap(d1,d2) will feed to this function.
1396 : */
1397 : void
1398 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1399 : swap(deque&& __x)
1400 : #else
1401 : swap(deque& __x)
1402 : #endif
1403 : {
1404 : std::swap(this->_M_impl._M_start, __x._M_impl._M_start);
1405 : std::swap(this->_M_impl._M_finish, __x._M_impl._M_finish);
1406 : std::swap(this->_M_impl._M_map, __x._M_impl._M_map);
1407 : std::swap(this->_M_impl._M_map_size, __x._M_impl._M_map_size);
1408 :
1409 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1410 : // 431. Swapping containers with unequal allocators.
1411 : std::__alloc_swap<_Tp_alloc_type>::_S_do_it(_M_get_Tp_allocator(),
1412 : __x._M_get_Tp_allocator());
1413 : }
1414 :
1415 : /**
1416 : * Erases all the elements. Note that this function only erases the
1417 : * elements, and that if the elements themselves are pointers, the
1418 : * pointed-to memory is not touched in any way. Managing the pointer is
1419 : * the user's responsibility.
1420 : */
1421 : void
1422 : clear()
1423 : { _M_erase_at_end(begin()); }
1424 :
1425 : protected:
1426 : // Internal constructor functions follow.
1427 :
1428 : // called by the range constructor to implement [23.1.1]/9
1429 :
1430 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1431 : // 438. Ambiguity in the "do the right thing" clause
1432 : template<typename _Integer>
1433 : void
1434 : _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
1435 : {
1436 : _M_initialize_map(static_cast<size_type>(__n));
1437 : _M_fill_initialize(__x);
1438 : }
1439 :
1440 : // called by the range constructor to implement [23.1.1]/9
1441 : template<typename _InputIterator>
1442 : void
1443 : _M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
1444 : __false_type)
1445 : {
1446 : typedef typename std::iterator_traits<_InputIterator>::
1447 : iterator_category _IterCategory;
1448 : _M_range_initialize(__first, __last, _IterCategory());
1449 : }
1450 :
1451 : // called by the second initialize_dispatch above
1452 : //@{
1453 : /**
1454 : * @brief Fills the deque with whatever is in [first,last).
1455 : * @param first An input iterator.
1456 : * @param last An input iterator.
1457 : * @return Nothing.
1458 : *
1459 : * If the iterators are actually forward iterators (or better), then the
1460 : * memory layout can be done all at once. Else we move forward using
1461 : * push_back on each value from the iterator.
1462 : */
1463 : template<typename _InputIterator>
1464 : void
1465 : _M_range_initialize(_InputIterator __first, _InputIterator __last,
1466 : std::input_iterator_tag);
1467 :
1468 : // called by the second initialize_dispatch above
1469 : template<typename _ForwardIterator>
1470 : void
1471 : _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
1472 : std::forward_iterator_tag);
1473 : //@}
1474 :
1475 : /**
1476 : * @brief Fills the %deque with copies of value.
1477 : * @param value Initial value.
1478 : * @return Nothing.
1479 : * @pre _M_start and _M_finish have already been initialized,
1480 : * but none of the %deque's elements have yet been constructed.
1481 : *
1482 : * This function is called only when the user provides an explicit size
1483 : * (with or without an explicit exemplar value).
1484 : */
1485 : void
1486 : _M_fill_initialize(const value_type& __value);
1487 :
1488 : // Internal assign functions follow. The *_aux functions do the actual
1489 : // assignment work for the range versions.
1490 :
1491 : // called by the range assign to implement [23.1.1]/9
1492 :
1493 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1494 : // 438. Ambiguity in the "do the right thing" clause
1495 : template<typename _Integer>
1496 : void
1497 : _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
1498 : { _M_fill_assign(__n, __val); }
1499 :
1500 : // called by the range assign to implement [23.1.1]/9
1501 : template<typename _InputIterator>
1502 : void
1503 : _M_assign_dispatch(_InputIterator __first, _InputIterator __last,
1504 : __false_type)
1505 : {
1506 : typedef typename std::iterator_traits<_InputIterator>::
1507 : iterator_category _IterCategory;
1508 : _M_assign_aux(__first, __last, _IterCategory());
1509 : }
1510 :
1511 : // called by the second assign_dispatch above
1512 : template<typename _InputIterator>
1513 : void
1514 : _M_assign_aux(_InputIterator __first, _InputIterator __last,
1515 : std::input_iterator_tag);
1516 :
1517 : // called by the second assign_dispatch above
1518 : template<typename _ForwardIterator>
1519 : void
1520 : _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
1521 : std::forward_iterator_tag)
1522 : {
1523 : const size_type __len = std::distance(__first, __last);
1524 : if (__len > size())
1525 : {
1526 : _ForwardIterator __mid = __first;
1527 : std::advance(__mid, size());
1528 : std::copy(__first, __mid, begin());
1529 : insert(end(), __mid, __last);
1530 : }
1531 : else
1532 : _M_erase_at_end(std::copy(__first, __last, begin()));
1533 : }
1534 :
1535 : // Called by assign(n,t), and the range assign when it turns out
1536 : // to be the same thing.
1537 : void
1538 : _M_fill_assign(size_type __n, const value_type& __val)
1539 : {
1540 : if (__n > size())
1541 : {
1542 : std::fill(begin(), end(), __val);
1543 : insert(end(), __n - size(), __val);
1544 : }
1545 : else
1546 : {
1547 : _M_erase_at_end(begin() + difference_type(__n));
1548 : std::fill(begin(), end(), __val);
1549 : }
1550 : }
1551 :
1552 : //@{
1553 : /// Helper functions for push_* and pop_*.
1554 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1555 : void _M_push_back_aux(const value_type&);
1556 :
1557 : void _M_push_front_aux(const value_type&);
1558 : #else
1559 : template<typename... _Args>
1560 : void _M_push_back_aux(_Args&&... __args);
1561 :
1562 : template<typename... _Args>
1563 : void _M_push_front_aux(_Args&&... __args);
1564 : #endif
1565 :
1566 : void _M_pop_back_aux();
1567 :
1568 : void _M_pop_front_aux();
1569 : //@}
1570 :
1571 : // Internal insert functions follow. The *_aux functions do the actual
1572 : // insertion work when all shortcuts fail.
1573 :
1574 : // called by the range insert to implement [23.1.1]/9
1575 :
1576 : // _GLIBCXX_RESOLVE_LIB_DEFECTS
1577 : // 438. Ambiguity in the "do the right thing" clause
1578 : template<typename _Integer>
1579 : void
1580 : _M_insert_dispatch(iterator __pos,
1581 : _Integer __n, _Integer __x, __true_type)
1582 : { _M_fill_insert(__pos, __n, __x); }
1583 :
1584 : // called by the range insert to implement [23.1.1]/9
1585 : template<typename _InputIterator>
1586 : void
1587 : _M_insert_dispatch(iterator __pos,
1588 : _InputIterator __first, _InputIterator __last,
1589 : __false_type)
1590 : {
1591 : typedef typename std::iterator_traits<_InputIterator>::
1592 : iterator_category _IterCategory;
1593 : _M_range_insert_aux(__pos, __first, __last, _IterCategory());
1594 : }
1595 :
1596 : // called by the second insert_dispatch above
1597 : template<typename _InputIterator>
1598 : void
1599 : _M_range_insert_aux(iterator __pos, _InputIterator __first,
1600 : _InputIterator __last, std::input_iterator_tag);
1601 :
1602 : // called by the second insert_dispatch above
1603 : template<typename _ForwardIterator>
1604 : void
1605 : _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
1606 : _ForwardIterator __last, std::forward_iterator_tag);
1607 :
1608 : // Called by insert(p,n,x), and the range insert when it turns out to be
1609 : // the same thing. Can use fill functions in optimal situations,
1610 : // otherwise passes off to insert_aux(p,n,x).
1611 : void
1612 : _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
1613 :
1614 : // called by insert(p,x)
1615 : #ifndef __GXX_EXPERIMENTAL_CXX0X__
1616 : iterator
1617 : _M_insert_aux(iterator __pos, const value_type& __x);
1618 : #else
1619 : template<typename... _Args>
1620 : iterator
1621 : _M_insert_aux(iterator __pos, _Args&&... __args);
1622 : #endif
1623 :
1624 : // called by insert(p,n,x) via fill_insert
1625 : void
1626 : _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
1627 :
1628 : // called by range_insert_aux for forward iterators
1629 : template<typename _ForwardIterator>
1630 : void
1631 : _M_insert_aux(iterator __pos,
1632 : _ForwardIterator __first, _ForwardIterator __last,
1633 : size_type __n);
1634 :
1635 :
1636 : // Internal erase functions follow.
1637 :
1638 : void
1639 : _M_destroy_data_aux(iterator __first, iterator __last);
1640 :
1641 : // Called by ~deque().
1642 : // NB: Doesn't deallocate the nodes.
1643 : template<typename _Alloc1>
1644 : void
1645 0 : _M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
1646 0 : { _M_destroy_data_aux(__first, __last); }
1647 :
1648 : void
1649 165 : _M_destroy_data(iterator __first, iterator __last,
1650 : const std::allocator<_Tp>&)
1651 : {
1652 : if (!__has_trivial_destructor(value_type))
1653 : _M_destroy_data_aux(__first, __last);
1654 165 : }
1655 :
1656 : // Called by erase(q1, q2).
1657 : void
1658 : _M_erase_at_begin(iterator __pos)
1659 : {
1660 : _M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
1661 : _M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
1662 : this->_M_impl._M_start = __pos;
1663 : }
1664 :
1665 : // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
1666 : // _M_fill_assign, operator=.
1667 : void
1668 : _M_erase_at_end(iterator __pos)
1669 : {
1670 : _M_destroy_data(__pos, end(), _M_get_Tp_allocator());
1671 : _M_destroy_nodes(__pos._M_node + 1,
1672 : this->_M_impl._M_finish._M_node + 1);
1673 : this->_M_impl._M_finish = __pos;
1674 : }
1675 :
1676 : //@{
1677 : /// Memory-handling helpers for the previous internal insert functions.
1678 : iterator
1679 : _M_reserve_elements_at_front(size_type __n)
1680 : {
1681 : const size_type __vacancies = this->_M_impl._M_start._M_cur
1682 : - this->_M_impl._M_start._M_first;
1683 : if (__n > __vacancies)
1684 : _M_new_elements_at_front(__n - __vacancies);
1685 : return this->_M_impl._M_start - difference_type(__n);
1686 : }
1687 :
1688 : iterator
1689 : _M_reserve_elements_at_back(size_type __n)
1690 : {
1691 : const size_type __vacancies = (this->_M_impl._M_finish._M_last
1692 : - this->_M_impl._M_finish._M_cur) - 1;
1693 : if (__n > __vacancies)
1694 : _M_new_elements_at_back(__n - __vacancies);
1695 : return this->_M_impl._M_finish + difference_type(__n);
1696 : }
1697 :
1698 : void
1699 : _M_new_elements_at_front(size_type __new_elements);
1700 :
1701 : void
1702 : _M_new_elements_at_back(size_type __new_elements);
1703 : //@}
1704 :
1705 :
1706 : //@{
1707 : /**
1708 : * @brief Memory-handling helpers for the major %map.
1709 : *
1710 : * Makes sure the _M_map has space for new nodes. Does not
1711 : * actually add the nodes. Can invalidate _M_map pointers.
1712 : * (And consequently, %deque iterators.)
1713 : */
1714 : void
1715 0 : _M_reserve_map_at_back(size_type __nodes_to_add = 1)
1716 : {
1717 0 : if (__nodes_to_add + 1 > this->_M_impl._M_map_size
1718 : - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
1719 0 : _M_reallocate_map(__nodes_to_add, false);
1720 0 : }
1721 :
1722 : void
1723 : _M_reserve_map_at_front(size_type __nodes_to_add = 1)
1724 : {
1725 : if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
1726 : - this->_M_impl._M_map))
1727 : _M_reallocate_map(__nodes_to_add, true);
1728 : }
1729 :
1730 : void
1731 : _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
1732 : //@}
1733 : };
1734 :
1735 :
1736 : /**
1737 : * @brief Deque equality comparison.
1738 : * @param x A %deque.
1739 : * @param y A %deque of the same type as @a x.
1740 : * @return True iff the size and elements of the deques are equal.
1741 : *
1742 : * This is an equivalence relation. It is linear in the size of the
1743 : * deques. Deques are considered equivalent if their sizes are equal,
1744 : * and if corresponding elements compare equal.
1745 : */
1746 : template<typename _Tp, typename _Alloc>
1747 : inline bool
1748 : operator==(const deque<_Tp, _Alloc>& __x,
1749 : const deque<_Tp, _Alloc>& __y)
1750 : { return __x.size() == __y.size()
1751 : && std::equal(__x.begin(), __x.end(), __y.begin()); }
1752 :
1753 : /**
1754 : * @brief Deque ordering relation.
1755 : * @param x A %deque.
1756 : * @param y A %deque of the same type as @a x.
1757 : * @return True iff @a x is lexicographically less than @a y.
1758 : *
1759 : * This is a total ordering relation. It is linear in the size of the
1760 : * deques. The elements must be comparable with @c <.
1761 : *
1762 : * See std::lexicographical_compare() for how the determination is made.
1763 : */
1764 : template<typename _Tp, typename _Alloc>
1765 : inline bool
1766 : operator<(const deque<_Tp, _Alloc>& __x,
1767 : const deque<_Tp, _Alloc>& __y)
1768 : { return std::lexicographical_compare(__x.begin(), __x.end(),
1769 : __y.begin(), __y.end()); }
1770 :
1771 : /// Based on operator==
1772 : template<typename _Tp, typename _Alloc>
1773 : inline bool
1774 : operator!=(const deque<_Tp, _Alloc>& __x,
1775 : const deque<_Tp, _Alloc>& __y)
1776 : { return !(__x == __y); }
1777 :
1778 : /// Based on operator<
1779 : template<typename _Tp, typename _Alloc>
1780 : inline bool
1781 : operator>(const deque<_Tp, _Alloc>& __x,
1782 : const deque<_Tp, _Alloc>& __y)
1783 : { return __y < __x; }
1784 :
1785 : /// Based on operator<
1786 : template<typename _Tp, typename _Alloc>
1787 : inline bool
1788 : operator<=(const deque<_Tp, _Alloc>& __x,
1789 : const deque<_Tp, _Alloc>& __y)
1790 : { return !(__y < __x); }
1791 :
1792 : /// Based on operator<
1793 : template<typename _Tp, typename _Alloc>
1794 : inline bool
1795 : operator>=(const deque<_Tp, _Alloc>& __x,
1796 : const deque<_Tp, _Alloc>& __y)
1797 : { return !(__x < __y); }
1798 :
1799 : /// See std::deque::swap().
1800 : template<typename _Tp, typename _Alloc>
1801 : inline void
1802 : swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
1803 : { __x.swap(__y); }
1804 :
1805 : #ifdef __GXX_EXPERIMENTAL_CXX0X__
1806 : template<typename _Tp, typename _Alloc>
1807 : inline void
1808 : swap(deque<_Tp,_Alloc>&& __x, deque<_Tp,_Alloc>& __y)
1809 : { __x.swap(__y); }
1810 :
1811 : template<typename _Tp, typename _Alloc>
1812 : inline void
1813 : swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>&& __y)
1814 : { __x.swap(__y); }
1815 : #endif
1816 :
1817 : _GLIBCXX_END_NESTED_NAMESPACE
1818 :
1819 : #endif /* _STL_DEQUE_H */
|